BIOPESTICIDES : GREEN ALTERNATIVE IN PEST MANAGEMENT: A REVIEW

*SUSHMA DEB; PATEL, B. C.; PATEL, P. S. AND PATEL, R. K.

DEPARTMENT OF AGRICULTURAL ENTOMOLOGY C. P. COLLEGE OF AGRICULTURE SARDARKRUSHINAGAR DANTIWADA AGRICULTURAL UNIVERSITY SARDARKRUSHINAGAR – 385 506, GUJARAT, INDIA

*EMAIL: debsushma@gmail.com

ABSTRACT

Till recent, chemical pesticides is the most frequent used tool for pest management. Indiscriminate use and sole reliance on eco-hazardous pesticides have created several environment related problems, which leads to search on eco-friendly approaches to tackle the noxious/ hazardous pests. With this backdrop of knowledge, the paper presents a review of biopesticides reported to be insecticidal against various insect pests in agriculture as well as forest, domestic and public health importance without any detrimental effect on beneficial fauna for sustainable agriculture.

KEY WORDS: Biopesticides, pest management

INTRODUCTION

Indian farmers are using wide range of chemical pesticides in which insecticides account for 78 per cent, herbicides for 14 per cent, fungicides for 16 per cent and others 4 per cent (Khan et al., 2014). Pesticides have contaminated different components of our environment and pose a potential health hazard to consumers. The indiscriminate use of pesticides has created several problems, which came to limelight with the publication of "Silent Spring" by Rachel Carson. Therefore, future pest problems will tackled have to be environmentally benign manner as a part of a sustainable crop production technology (Dhaliwal and Heinrichs, 1998; Koul et al., 2004; Koul, 2008). Pest management should ecologically based and undertaken within the context of integrated crop management. In fact, the use of biopesticides has gained a lot of importance that reduce the pests for longer time. The term 'biopesticide'embraced a wide diversity of both chemical and microbial active ingredients (Joseph *et al.*, 2012).

Botanicals as biopesticides

The use of plants has been practiced as pesticides since time immemorial. The Hindu book, the Rig Veda, mentioned the use of poisonous plants for pest control (Koul and Walia, 2009). The exploitation of the toxicological properties of plants had an even older history. Of the estimated 3,08,800 plant species, very few have been surveyed and most remained unexploited and un-utilized pesticidally active principles. Till date, about 2400 plant species have been reported to possess pesticidal properties belonging to 189 families among which about 22 families contain

more than 10 plant species in each family with insecticidal properties. With the development of agriculture, links between food production and pest might have provided control opportunity for protection of crops against pests (Thacker, 2002). Approximately, more than 350 insecticidal compounds, more than 800 insect feeding deterrents and quite a number of insect good growth inhibitors and regulators had been isolated from various plant species, but apparently only few had achieved the commercial status. Among diverse array of plant chemicals, only about 10 per cent of these had been examined, indicating that there is enormous scope for further work (Benner, 1993).

Among the botanical pesticides, neem (Azadirachta indica) is being widely used as several formulations, because of its active component Azadirachtin. Jilani et al. (2003) tested neem seed oil from five localities of Pakistan against red flour beetle as growth inhibitor and found significant reduction in the progeny at 250 ppm or higher rate in all the samples. According to Phukon et al. (2014), neem oil was nearly as effective as cypermethrin in reducing fruit damage by Helicoverpa armigera leading to increased tomato yield. Mustafiz et al. (2015) reported that neem oil @ 3.0 ml/l of water at three days interval showed performance to control H. armigera in tomato in respect to number of total fruits per plant, number of healthy fruits per plant with lowest number of infested fruit resulting highest yield and highest benefit cost ratio. Neem leaf extract and garlic extract also showed performance better controlling fruit borer. Neem oil was more effective against jassids (20.4 to 42.5 % reduction) in cotton than that of neem seed kernel extract. However,

both neem oil and neem seed kernel extract were found to reduce more than 50 per cent of whitefly population (Jat and Jeyakumar, 2006).

Neem seed kernel (NSKE) 5% was found to be effective against the sucking pests (leafhopper and aphids) of cotton followed by Pongamia glabra seed kernel extract 5%, neem oil 3% and P. glabra oil 3% and maximum population reduction was noticed on the 3rd day after treatment (Vinodhini Malaikozhundan, 2011). Significant lower mean mortality of H. armigera larvae was observed when allowed to feed on square dipped in neem seed extract (2.5-10%) followed by Carica papaya seed extract (2.5%). However, C. papaya seed extract (2.5-10%) was proved to be most significant followed by Acacia bark extract (5-10%) during larval immersion method (Chauhan et al., 2013). The lowest tomato fruit infestation due to H. armigera, in terms of number and weight (27.15% 22.29%, respectively) observed in plots treated with NSKE 5% leading to highest infestation reduction (30.08%) over control, highest yield (18.14 t/ha) and highest MBCR (2.99), which was statistically similar to tobacco leaf extract and cypermethrin treated plots (Rahman et al., 2014). There is potential to use insecticide (Emamectin benzoate) in combination with the botanical insecticides (neem products) maintain the population of Plutella xylostella below damage level in cauliflower (Akbar et al., 2014). Stanikzi and Thakur (2016) obtained comparatively higher cabbage yield from the plots treated with botanicals treatments viz., NSKE, neem oil than untreated control. The highest yield, however, was recorded in the insecticidal treatment. Better exhibited by performance neem

product may be due to repellency of the larvae of different instars on the leaves from the treated plants and secondly due to antifeedant effect on the larvae (Rajput *et al.*, 2003).

According to Ali et al. (2016), extract of neem (A. indica), tobacco (Nicotiana tabacum) and eucalyptus (Eucalyptus globus) showed comparative superiority to combat sucking insect pests (white flies, jassid and mites) in brinjal. Noonari et al. (2016) recorded the highest reduction of thrips (67.65%) in the treatment neem seed extract followed by neem oil (60.00%), tobacco (63.59%) and hing (Asafoetida) (52.68%) after 96 hours of application on cotton. The highest reduction of jassid (71.97%) was recorded in neem seed extract followed by neem oil (70.06%), hing (Asafoetida) (68.15%) and tobacco (23.56%). With regards to reduction in whitefly population, the maximum reduction (60.18%) was recorded in hing (Asafoetida) followed by neem oil (59.78%), neem extract (59.38%) and tobacco (40.61%). Solangi et al. (2016) noted the higher efficacy of neem extract followed by tobacco, tooh (Citrullus colocynthus Schrad. L.), Akk (Calotropis procera Alton. F.) with 78.42%, 72.33%, 69.51% and 65.55% reduction in thrips population on cauliflower. In case of whitefly, tooh (83.81%) was highly effective, whereas population of diamondback moth was greatly reduced in the treatment neem (97.23%), tobacco (95.39%), tooh (92.19%) and dhatura (Datura stramonium) (89.79%).

Reddy et al. (2012) published the extracts of bitter olive, Melia azadiracta not only controlled P. xylostella, but also enhanced the activity of parasitoid against diamondback moth and hence, can be widely used in integrated management (Razmjoo et al., 2013). Basavaraj et al.

(2014) reported comparative lower population of *H. armigera* infesting sunflower and the highest benefit: cost ratio in the treatment *Parthenium* leaf extract treatment (37.29) followed by NSKE (20.17) and Pongamia seed kernel extract (12.54).

and Uma Kumar (2009)explored plants certain of Euphorbiaceae family for their insecticidal property against Р. xylostella by using leaf dip method as bioassay technique and found that of plants tested, potentially insecticidal against P. xylostella were Euphorbia antiquorum, pulcherrima, Croton bonplandianum, Jatropa curcas, gossypifolia, J. Breynia officinalis and Ricinuscommunis.

Sundararai al.(2004)etreported toxic and repellent properties of sugarcane bagasse-based lignin against some stored grain insect pests including Tribolium castaneum. Jeyasankar et al. (2010) reported antifeedant and growth inhibitory activities of Syzygium lineare Wall against Spodoptera litura. The efficacy two botanical formulations, mixtures of Piper retrofractum with Annonasquamosa (RS) extracts and Aglaia odorata with A. squamosa (OS) extracts at 0.05 and 0.1% compared with deltamethrin 0.04% and Bt 0.15% and the results revealed that both the formulations of RS and OS at 0.1% was more effective than synthetic pyrethroid without hampering activity of natural enemies (Dadang et al., 2011).

Sahayaraj (2011) reported that population of *S. litura* and *H. armigera* was reduced when field was treated with *Ipomea carnea* and *Vitex negundo*. Mishra and Singh (2014) revealed that the module having plant extract comprising of dhatura, neem, dhark (*Melia azadirach* L.), Lantana

(Lantana camera L.), Mehandi (Lawsonia inermis L.) and recommended check (three sprays of methyl demeton 25 EC at 1250 ml/ha) gave significantly superior control of *P. xylostella* in cabbage over the untreated check (45.16 larvae / 5 plants). Similar kinds of results were also reported by Moorthy and Kumar (2000) and Liang *et al.* (2003).

According to Odewole and Adebayo (2014), Zingiber officinales extract effectively control the P. xylostella larvae at all concentrations with 25 % w/v and gave the highest cabbage yield, while Tephrosia vogelii and L. camara extracts were as effective as Deltamethrin at different concentrations and hours on adult of diamondback moth. Anosom® 1 EC (liquid formulation of Anonin from Annona squamosa) was found to be most effective against P. xylostella among botanicals viz., Deris indica and A. Indica, as evidenced from the lowest LC₅₀ value of only 0.1 ppm (Sontakke et al., 2014). Tuan et al. (2014) reported that combo-solution of Garlic and Chilli effectively reduced cabbage insect pests. On the other hand, the solution not only reduced the number of days required for the cabbage growth, but also enhanced the leaf number, head diameter, head weight and quality of cabbage greatly.

Botanical treatments viz., neem; lantana; Chilli, Capsicum annuum and Turmeric, Curcuma longa reduced the number of diamondback moth larval and pupal population significantly and increased marketable yield of cabbage. However, neem was the best treatment, as it gave the highest yield and also maximum economic return in cabbage (Begna and Damtew, 2015). Allium sativum, A. indica and Momordica balsamina extracts significantly reduced P. xylostella populations, leaf and head damage of cabbage, also

increased the plant height and yield. The botanical insecticides were at par with the synthetic insecticide Lambda cyhalothrin 2.5 EC due to their pungent and repellent mode of action (Degri and Zakaria, 2015). Antifeedant activity and toxicity of commercial formulations of Anosom® squamosa), Derisom® (P. glabra), Margosom® (A. indica) and ethanolic extract of Argemone mexicana, Nerium oleander, Parthenium hysterophorus were evaluated by Khan and Qamar (2015) and reported that the highest exhibited concentration Derisom 83.24% starvation of household pest, Periplaneta americana after 24 hrs of treatment. Percent mortalities showed by Populus (Populus euphratica) and Sea buckthorns (Hippophae rhamnoids) plant extracts at 3% was, however, low as compared to the synthetic insecticides, but theses biopesticides were helpful to some extent for control of tomato fruit borer (Rizvi and Jaffar, 2015).

Amongst the all tested extracts of botanicals (rhizome of *Acorus calamus*, leaves of *Vitexnegundo*, *Adhatoda vasica* and tuber of *Dioscorea deltoidea*, higher mortality of *H. armigera* (48.91%) was noted in the treatment with hexane extract of *A. calamus* (Matharu and Mehta, 2016).

Based on the literature discussed above, it is clearly evident that botanical insecticides having insecticidal property viz... pongam, custard apple, Parthenium etc. has tackled various crop pests effectively. Among botanicals, neem is widely used not only because of its insecticidal properties, but also for its synergistic action with microbial pesticides (Reddy et al., 2012), which can be an effective tool in IPM.

Microbial pesticides Entomopathogenic fungi

Entomopathogenic fungi have significant role among all the biocontrol agents because of its mode of pathogenicity, broad host range etc. Therefore, these have been received a lot of attention due to their prospective as biocontrol agents against insect pests and can be incorporated in IPM systems (Reddy et al., 2013). Major entomopathogenic fungal formulations developed against insect available in market are Beauveria bassiana, Metarhizium anisopliae and Verticillium (Lecanicillium) lecanii. Pathogenesis is occurred mechanical force, enzymatic processes and perhaps certain metabolites. Insect cuticle mainly composed of chitin and protein. Various enzymes produced by entomopathogenic fungi have significant role for degradation of insect cuticle, saprophytic growth of and activation fungi prophenoloxidase (Khachatourians and Qazi, 2008).

The bio-agent, B. bassiana was found to reduce 39.7 to 72.6 per cent of white fly population in cotton. However, it was ineffective against jassids, as it could reduced only 10-14 per cent of population (Jat and Jeyakumar, 2006). As per the report of Karthikeyan and Selvanarayanan (2011), B. bassiana 0.25% recorded the highest mortality of H. armigera (86.67 %), S. litura (86.67 %) and Earias vittella (73.33 %) and found most effective against chewing pests in vitro, whereas sucking pest complex viz., Aphis gossypii (100.00 Bemisia tabaci (100.00 %) and Amrasca devastans (93.33 %) were effectively managed by V. lecanii at the same concentration i.e. 0.25%.

Beauveria bassiana was used to evaluate its pathogenecity against adults of different aphid species i.e.,

Schizaphis graminum, Rhopalosiphum Brevicorvne brassicae Lipaphis ervsimi and their natural enemy Coccinella septempunctata. The fungus was found effective at all concentrations i.e., 1×10^6 , 1×10^7 and 1×10^8 spores/ml on all aphid species, uppermost concentration but the (1×10^{8}) spores/ml) provided maximum control within short period of time (P < 0.0001), while the LT₅₀ values were in range of 2.19-3.73 days for different aphid species treated at various concentrations. B. bassiana showed little or no detrimental effects to C. septempunctata. Hence, this entomopathogenic fungus can be used as potential biocontrol agent for the management of aphids (Akmal et al., 2013).

Zafar *et al.* (2016) studied the application of different isolates of *B. bassiana* against different life stages of *B. tabaci* on different host plants *i.e.Gossypium hirsutum*, *Lycopersicum esculentum*, *Solanum melongena* and *Capsicum annum*. The results showed *B. bassiana* isolate (Bb-01) to be the most effective with LC₅₀ value $(2.4\times10^7 \text{ spores/ml})$, which caused the highest mortality of eggs (65.30%) and nymphs (88.82%) with LC₅₀ value $(2.7\times10^6 \text{ spores/ml})$.

Isolates of *M. anisopliae* and *B.* bassiana from naturally infected insects were found to be pathogenic to rice ear head tested Leptocorisa acuta in both greenhouse (up to 87% and 77.7% mortality, respectively) and field (86.6% and 74.9%, respectively) condition at 10 days after treatment. Among 12 selected isolates of M. anisopliae and B. bassiana tested, M. anisopliae (OM3-BD), M. anisopliae (HG3-B) and M. anisopliae (HG5-BD) exhibited higher pathogenicity to L. acuta as compared to the rest. M. anisopliae showed better efficacy against L. acuta

as compared to B.bassiana (Loc and Chi. 2005). Naik and Shekharappa (2009) studied the bioefficacy of different formulation (crude, wettable powder and oil based formulation) of entomopathogenic fungi viz... bassiana, M. anisopliae and V. lecanii against sucking pests of okra and concluded that oil based formulation of all the fungal pathogens effectively managed the sucking pests. Minimum number of leafhopper (5.25 / 3 leaves) and mites (9.75 /3 leaves) recorded in plots treated with oil based M. anisopliae, whereas oil based B. bassiana was most effective against thrips (2.58 /3 leaves) and V. lecanii against aphid (7.75 /3 leaves) and whitefly (2.70 /3 leaves). The yield of okra was significantly higher in oil based formulation of M. anisopliae (38.80 q/ha) and V. lecanii (38.50 Similarly, q/ha). among formulations (liquid, talc and lignite) of M. anisopliae $3x10^{12}$ conidia/ha, liquid formulation was found to be efficient for the control of sugarcane grub, Holotrichia (Chelvi et al., 2011). In another study Manisegaran etal. application of M. anisopliae at 4×10^9 conidia/ha was found effective next to chlorpyriphos and registered 92 per cent reduction in H. serrata population on sugarcane at 60th DAT leading to higher cane yield and incremental benefit cost ratio (IBCR) (7.58). As per the report of Mohammadbeigi and Port (2013), B. bassiana and M. anisopliae significant mortality caused zebra (Orthoptera: Uvarovistia Tettigoniidae) by both contact and ingestion. The highest concentrations of B. bassiana $(1.5 \times 10^8 \text{ spores/ml})$ and (2×10^7) anisopliae spores/ml) М. caused 100 per cent and 53.3 per cent mortality, respectively, when applied topically on the nymphs, whereas ingestion by insects using lettuce baits

inoculated with different conidial concentrations, the mortality caused by *B. bassiana* and *M. anisopliae* at concentration of 5×10^6 conidia/ml was 30 per cent and 43 per cent, respectively. The entomopathogenic fungi *B. bassiana* and *M. anisopliae* could be effectively used as pest management option in production of organic tomato to reduce the pest population below economic threshold level and increased yield (Phukon *et al.*, 2014).

Liquid formulation of *V. lecanii* showed significantly higher efficacy in controlling aphids irrespective dosage and registered up to 96.70 per cent kill of the pest (Chavan et al., 2008). It suppressed 62 per cent of Aphis craccivora population at 39 days after seedling emergence. During the same period, B. bassiana reduced 72 per cent of S. litura larval population (0.73 larvae). The infestation of S. litura and Aproaerema modicella were greatly reduced after the treatment of B. bassiana; subsequently the yield (1721.31 kg/ha) and cost benefit ratio (1: 1.93) were increased (Sahayaraj and Namachivayam, 2011). The LC₅₀ values of V. lecanii for Toxoptera citricida and its parasitoid, Lysiphlebus testaceipes were 2.26×10^{10} spores/ml and 1.09×10^9 spores/ml, respectively and they are statistically at par with each other indicating limitation in integration of biocontrol agent, L. testaceipes in a pest management program to control T. citricida while using V. lecanii in citrus (Balfour and Khan, 2012). Kulkarni and Patil (2013) mentioned about the efficacy of V. lecanii to control three species of mealybug Maconellicocus viz., hirsutus, **Planococcus** citriand Ferrisia virgata on custard apple. Neem oil 1.0%, V. lecanii @ 2.5 kg/ha and azadirachtin 0.0009 per cent were found moderate effective against major

sucking pests of *Bt* cotton. In case of toxicity of insecticides on predators (Coccinellids and *Chrysoperla*) of sucking pests, all the biopesticides were found safer to predators (Ghelani *et al.*, 2014). As per the report of Janghel *et al.* (2015), *V. lecanii* was most effective biopesticide against aphid on okra, which was at par with the insecticidal check *i.e.* acetamiprid. Application of *L. lecanii* at conidial density of 10⁹ conidia/ml per week significantly decreased *B. tabaci* population on soybean (Rakhmad *et al.*, 2015).

Conidia of M. anisopliae in stored wheat along with dust carriers significantly higher mortality of Tribolium castaneum and less grain infestation (Batta and Safieh, 2005). Samodra and Ibrahim (2006) reported that B. bassiana formulated in kaolin showed the highest mortality of Sitophilus oryzae and lowest grain weight loss in stored rice followed by talc and tapioca flour. Similarly, Shafighi et al. (2014) reported that the addition of the diatomaceous earth (DE) to the fungal isolates of B. bassiana and M. anisopliae increased the pathogenicity especially at the highest exposure interval and provided satisfactory control of the insect pests of stored products. According to Dhuyo and Ahmed (2007), first and second instar larvae of larger grain borer, Prostephanus truncates more susceptible to B. bassiana in stored maize than the third instar, while pupal stage was found significantly more susceptible than other stages.

Bacterial pathogen

The most successful insect pathogen used for insect control is the soil bacterium, *Bacillus thuringiensis* (*Bt*), which occupies about 2 per cent of the total insecticidal market (Bravo *et al.*, 2011). Each *Bt* strains produces

different mix of toxins and specifically kills one or a few related species of insects (*Bt* subspecies *kurstaki* and *aizawai* for lepidopteran larvae) and (*Bt* subspecies *tenebrionis* for coleopteran larvae). Some of these strains are specific to mosquitoes (*Bt* subspecies *israelensis*).

Cry, Cyt and Vip proteins are stomach poisons and must be ingested for toxicity. The cry genes code for proteins with a range of molecular masses from 50 to 140 kDa. Upon ingestion by the susceptible insect larvae, protoxins are solubilized in the high alkaline pH of midgut and proteolytically digested by midgut proteinases to release the toxic fragments of approximately 55-68 kDa. Action of Cry toxin is a multistage process (Bravo *et al.*, 2011), which includes:

- The activated toxin binds to receptors located on the apical microvillus membrane of epithelial midgut cells. Two important insect proteins have been identified as receptors for Cry toxins viz., aminopeptidase N (APN) and Cadherins. Insect glycolipids were additionally suggested as a receptor in nematodes.
- Binding of the toxin to the receptor leads to change in the toxin's conformation, allowing toxin insertion into the membrane.
- Oligomerization of the toxin follows and this oligomer then forms a pore that leads to osmotic cell lysis and larval death.

McGaughey (1978) noticed good control (92%) of *Plodia interpunctella* and *Ephesti acautella* in bulk wheat and corn by treating the surface layers with dust or aqueous suspension of *Bt*. Ahmedani *et al*.

(2008) evaluated three commercial formulations of Btagainst castaneum and reported Ecotech Pro as more effective than Dipel ES and Bactospeine in suppressing the pest. Effect of Bt var kurstaki on 3rd instar larvae of Hyposidra infixaria was studied. On 7th day after treatment, the lowest (50.00%) and the highest (96.43%) mortality were provided by Bt kurstaki @ 0.5 g/lit and 2 g/lit, respectively. On 10th ay after treatment Bt kurstaki @ 2 g/lit provided cent percent mortality (Nair et al., 2011). According to Vanlaldiki et al. (2013), Bt formulation (dipel) recorded the lowest larval population (0.21/plant) with highest cabbage yield (22.73t/ ha) and proved to be the most effective treatment followed by Bt (delfin) and nuvan with larval populations of 0.45 and 1.50/plant, respectively, as against 8.88/plant in untreated control. Regarding the safety of natural enemies, agrineem and delfin proved to be the safest insecticide to the predatory beetle, C. septempunctata the highest population 1.20/plant each against 1.28/plant in untreated control. Basavaraj et al. (2014) recorded comparatively lower population of *H. armigera* in the treatment V-Bt leading to the highest sunflower seed yield (3528 kg/ha), volume weight (55.14 g/100 ml) and oil content (37.78 %). Sontakke et al. (2014) reported microbial pesticide Lipel® (Bt subsp. kurstaki) was found to be very effective than MVP II (Cry1Ac) and XenTari® (Bt subsp. aizawai) against P. xylostella on cabbage.

Insect viruses

Among the insect viruses baculoviruses (Nuclear polyhedrosis virus, NPV and Granulosis virus, GV) are the most promising for insect control particularly of Lepidoptera and Diptera because of their specificity.

NPVs have been successfully used for management of devastating lepidopteran pests like *Heliothis* spp. and *Spodoptera* spp. on cotton, fruit and vegetable crops in several countries (Rosell *et al.*, 2008).

The virus particles are attached to the peritrophic membrane of the midgut. The lipoprotein membrane surrounding the virus fuses with plasma membrane of the gut wall cells and liberates nucleocapsids into the cytoplasm. The nucleotide transports virus DNA into the nucleus of the cell and virus gene expression begins. The virus multiplies rapidly and eventually fills the body of the host with virus particles. The infected larvae are extremely fragile to the touch. rupturing to release fluid filled with infective virus particles. This tendency to remain attached to foliage and then rupture is an important aspect of the virus life-cycle (Ramanujam et al., 2014).

A nuclear polyhedrosis and a granulosis virus have been isolated from E. cautella. Both the viruses Р. interpunctella. granulosis virus from P. interpunctella does not cross-infect E. cautella (Hunter et al., 1973). Another nuclear polyhedrosis virus has been isolated from Corcyra cephalonica (Rabindra and Subramaniam, 1975); but it is not known whether it will cross-infect other moths or not. Among the HaNPV isolates, CBE I (Coimbatore) and NEG (Negamum) applied at 3.0×10^{12} POB/ha on cotton and 1.5×10^{12} POB/ha on chickpea with crude sugar as an adjuvant significantly reduced the *H. armigera* larval population and increased the yield with higher cost/benefit ratios (Jeyarani et al., 2010). Among the three treatments, NPV 500 LE/ha treatment significantly reduced the both larval population and boll damage than the chemical

treatment Cypermethrin 25% Whereas, the combination treatment NPV 500 LE/ha + Cypermethrin 25% EC +Quinalphos 25% EC significantly reduced the pest population and boll damage than the individual treatments. Pugalenthi et al. (2013)reported that Nuclear Polyhedrosis Virus (NPV) may be a good potent source of Microbial pesticides against selected important agricultural lepidopteran field pests and boll damage.

Nematodes

Entomopathogenic nematodes in genus Steinernema Heterorhabditis have been successfully commercialized as biological control agents for a variety of insect pests species (Sharifi et al., 2014). The freeliving infective juveniles (IJ) have to locate a potential host, penetrate through its cuticle or natural openings and establish in the host's body cavity (Koppenhöfer et al., 2007). In the haemocoel, the nematode insect releases its symbiotic bacteria from its intestine. The bacteria proliferate, producing toxins and metabolites that kill the insect host and prevent invasion by secondary organisms. The nematodes feed on the lysed tissues of the host and bacterial colonies (Griffin et al., 2005).

Species and strains of Steinernema is more effective than heterorhabditis and Steinernema riobrave was the best performing nematode, producing earlier greater mortality of squash vine borer, Melittia cucurbitae both in laboratory as well as field conditions in South Carolina than other the strains (Canhilal and Carner, 2006). Strain Hawaii of Steinernema feltiae and strain USA/SC were found most virulent against Tribolium confusum and Ephestia kuehniella larvae. respectively (Athanassiou et al., 2008).

The efficacy of three strains of S. feltiae against S. oryzae at five different concentrations and different temperatures was tested by Laznik and Trdan (2010). They found all the strains as most effective at 25°C and highest concentration of nematode. The efficacy of the infective juveniles (IJs) of four native entomopathogenic nematode (EPN) species Steinernema affine (Bovien) (isolate 46), S. carpocapsae (Weiser) (isolate 1133), S. feltiae (Filipjev) (isolate 879) and *Heterorhabditis* bacteriophora (Poinar) (isolate 1144) investigated against the larvae American pinworm, Tuta absoluta (Meyrick) on tomato in Turkey. The results showed that S. feltiae (isolate 879) was the most effective nematode species against T. absoluta with up to 94.3 per cent mortality. Hence, it was clear from the study that EPNs can also be potential candidates to control insect pests and can be integrated into the management programme (Gözel and Kasap, 2015).

CONCLUSION

Biopesticides offers effective alternatives for the control of many insect pests (Isman, 2006; Khaman et al., 2006; Krischik and Davidson, 2007) due to their strength as being eco-friendly, economic, target specific, biodegradable and essentially nontoxic and non-pathogenic to animals and humans. Biopesticides are likely to play an important role in IPM in modern agriculture as well as pests of forest, domestic and public health importance. The only drawback, slow active nature, have to be tackled by developing effective strategies for using them in agriculture and by creating awareness in extension workers and farmers regarding the use of biopesticides. The price of the commercial biopesticides has to be competitive with synthetic chemical

pesticides or alternately the government has to provide subsidies for encouraging their use in agriculture to safeguard human health.

REFERENCES

- Ahmedani, M. S.; Haque, M. I.; Afzal, S. N.; Iqbal, U. and Naz, S. (2008). Scope of commercial formulations of *Bacillus thuringiensis* Berliner as an alternative to methyl bromide against *Tribolium castaneum*. *Pak. J. Bot.*, **40**(5): 2149-2156.
- Akbar, I.; Sattar, S.; Khurshid, I. and Akbar, A. (2014). Comparative efficacy of synthetic insecticides and botanical extracts against diamondback moth (*Plutella Xylostella*) (Lepidoptera: Plutellidae) in cauliflower. *European Acad. Res.*, **2**(5): 6051-6066.
- Akmal, M.; Freed, S.; Malik, M. N. and Gul, H. T. (2013). Efficacy of *Beauveria bassiana* (Deuteromycotina: Hypomycetes) against different aphid species under laboratory conditions. *Pak. J. Zool.*, **45** (1): 71-78.
- Ali, S. S.; Ahmad, S.; Ahmed, S. S.; Rizwana, H.; Siddiqui, S.; Ali, S. S.; Rattar, I. A. and Shah, M. A. (2016). Effect of biopesticides against sucking insect pests of brinjal crop under field conditions. *J. Basic Appl. Sci.*, **12:** 41-49.
- Athanassiou, C. G.; Palyvos, N. E. and Duarte, T. K. (2008). Insecticidal effect of Steinernema feltiae (Filipjev) against Tribolium confusum du Val and Ephestia kueniella (Zeller) in stored wheat. J. Stored Prod. Res., 44(1): 52-57.
- Balfour A. and Khan A. (2012): Effects of *Verticillium lecanii*

- (Zimm.) Viegas on *Toxoptera* citricida Kirkaldy (Homoptera: Aphididae) and its parasitoid *Lysiphlebus* testaceipes Cresson (Hymenoptera: Braconidae). *Plant Prot. Sci.*, **48**: 123-130.
- Basavaraj, K.; Naik, M. I.; Jagadish, K. S.; Geetha, S. and Shadakshari, Y. G. (2014). Efficacy of biorationals and botanical formulations against *Helicoverpa armigera* Hub. in sunflower. *J. Biopest.*, **7**: 94-98.
- Batta, Y. A. and Safieh, D. I. A. (2005). A study of treatment effect with *Metarhizium anisopliae* and four types of dusts on wheat grain infestation with red flour beetles (*Tribolium casteneum* Herbs). *J. Islamic Uni. Gaza*, **13**(1): 11-22.
- Begna, F. and Damtew, T. (2015). Evaluation of four botanical insecticides against diamondback moth, *Plutella Xylostella* L. (Lepidoptera: Plutellidae) on head cabbage in the central rift valley of Ethiopia. *Sky J. Agric. Res.*, **4**(5): 97-105.
- Benner, J. P. (1993). Pesticidal compounds from higher plants. *Pesticide Sci.*, **39**: 95-102.
- Bravo, A.; Likitvivatanavong, S.; Gill, S. S. and Soberón, M. (2011). *Bacillus thuringiensis*: a story of a successful bioinsecticide. *Insect Biochem. Mol. Biol.*, **41**:423–431.
- Canhilal, R. and Carner, G. R. (2006).

 Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the squash vine borer, Melittia cucurbitae (Lepidoptera: Sesiidae) in South Carolina. J.

- *Agric. Urban Ento.*, **23**(1): 27-39
- Chauhan, M. S.; Shukla, J. P.; Pandey, U. K. and Bhadauria, S. (2013). Efficacy of some plant products as repellent to control *Helicoverpa armigera* (Hübner) (Lepidoptera: Noctuidae) fed on Tomato (*Lycopersicon esculentum*). *Int. J. Res. Bot.*, **3**(2): 37-43.
- Chavan, B. P.; Kadamand, J. R. and Saindane, Y. S. (2008). Bioefficacy of liquid formulation of *Verticillium lecanii* against aphid (*Aphis gossypii*). *Int. J. Plant Prot.*, 1(2): 69-72.
- Chelvi, C. T.; Thilagaraj, W. R. and (2011).Nalini, R. Field efficacy of formulations of microbial insecticide Metarhizium anisopliae (Hyphocreales: Clavicipitaceae) for the control sugarcane white grub Holotrichia serrata F (Coleoptera: Scarabidae). J. Biopest., 4(2): 186-189.
- Dadang; Fitriasari, E. D. and Prijono, D. (2011). Field efficacy of two botanical insecticide formulations against cabbage insect pests, *Crocidolomia pavonana* (F.) (Lepidoptera: Pyralidae) and *Plutella xylostella* (L.) (Lepidoptera: Yponomeutidae). *J. ISSAAS.*, 17(2): 38-47.
- Degri, M. M. and Zakaria, D. (2015).

 Bio-efficacy of some botanicals and karate in the management of cabbage diamondback moth (*Plutella xylostella* L.) (Lepidoptera: Plutellidae) in Northern Guinea Savannah of Nigeria. 2nd International Conference on Agriculture, Environment and Biological

- Sciences held on August 16-17, 2015 at Bali (Indonesia).
- Dhaliwal, G. S. and Heinrichs, E. A. (1998). *Critical Issues in Insect Pest Management*. Commonwealth Publishers, New Delhi.
- Dhuyo, A. R. and Ahmed, S. (2007). Evaluation of fungus *Beauveria bassiana* (Bals.) infectivity to the larger grain borer, *Prostephanus trncatus* (Horn.). *Pak. Ento.* **29** (2): 77-81.
- Ghelani, M. K.; Kabaria, B. B. and Chhodavadia, S. K. (2014). Field efficacy of various insecticides against major sucking pests of *Bt* cotton. *J. Biopest.*, **7**: 27-32.
- Gözel, Ç. and Kasap, İ. (2015). Efficacy of entomopathogenic nematodes against the Tomato leafminer, *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) in tomato field. *Türk. Ento. Derg.*, **39**(3): 229-237.
- Griffin, C. T.; Boemare, N. E. and Lewis, E. E. (2005). *Biology and Behaviour*. In: Grewal, P.S., Ehlers, R.-U. and Shapiro-Ilan, D. (Eds). Nematodes as Biocontrol Agents. Wallingford, UK, CABI Publishing, pp. 47-64.
- Hunter, D. K.; Hoffmann, D. F and Collier, S. J. (1973). Effectiveness of granulosis virus of the Indian meal moth as a protectant for stored in shell nuts: preliminary observations. *J. Invert. Pathol.*, **22** (2): 186-192.
- Isman M. B. (2006). Botanical insecticides, deterrents and repellents in modern agricultural and an increasingly regulated world. *Annu. Rev. Ento.*, **51**: 45–56.

- Janghel, M.; Mishra, I. and Mishra, B. K. (2015). Evaluation of different biopesticides against the aphid in okra at Bhubaneswar. *Middle-East J. Scientific Res.*, **23**(3): 421-425.
- Jat, M. C. and Jeyakumar, P. (2006). Bioefficacy of botanicals and bio-agents on sucking pests of cotton. *Ann. Pl. Prot. Sci.*, **14**(1): 8-10.
- Jeyarani S.; Sathiah N. and Karuppuchamy P. (2010). Field efficacy of Helicoverpa armigera nucleopolyhedrovirus isolates against Helicoverpa (Hübner) armigera (Lepidoptera: Noctuidae) on cotton and chickpea in Tamil Nadu. Plant Prot. Sci., 46: 116-122.
- Jeyasankar, Raja, N. A.; and Ignacimuthu, S. (2010).Antifeedant and growth inhibitory activities ofSyzygium lineare Wall. (Myrtaceae) against Spodoptera litura Fab. (Lepidoptera: Noctuidae). Cur. Res. J. Biol. Sci., 2: 173-177.
- Jilani, G. R.; Nazli, I. F.; Solangi, A. H. and Kazmi, A. R. (2003). Growth inhibiting effect of neem seed oil obtained from different locations of Pakistan against red flour beetle. *Pak. J. Ento.*, **25**: 95-99.
- Joseph, B.; Sowmya and Sujatha, S. (2012). Insight of botanical based biopesticides against economically important pest. *Int. J. Pharm. Life Sci.*, **3**(11): 2138-2148.
- Karthikeyan, A. and Selvanarayanan, V. (2011). *In vitro* efficacy of *Beauveria bassiana* (Bals.) Vuill. and *Verticillium lecanii* (Zimm.) viegas against selected

- insect pests of cotton. *Recent Res. Sci. Tech.*. **3**(2): 142-143.
- Khachatourians, G. G. and Qazi, S. S. (2008). *Entomopathogenic Fungi*. In: Brakhage A. A. and Zipfel P.F. (eds.), Biochemistry and Molecular Biology, Human and Animal Relationships, 2nd edition. The Mycota VI, Springer-Verlag, Berlin, Heidelberg.
- Khaman, L. A. M.; Talukder, D. and Hye, M. A. (2006). Toxic and repellent action of sugarcane bagasse-based lignin against some stored grain insect pests. *Univ. J. Zool. Rajshahi Univ.*, **25**: 27-30.
- Khan, F.; Mazid, M.; Khan, T. A.; Patel, H. K. and Roychowdhury, R. (2014). Plant Derived Pesticides in Control of Lepidopteran Insects: Dictum and Directions. *Res. J. Biol.*, **2**: 01-10.
- Khan, I. and Qamar, A. (2015). Comparative bioefficacy of selected plant extracts and some commercial biopesticides against important household pest, *Periplaneta americana*. *J. Ento. Zool. Stud.*, **3**(2): 219-224.
- Koppenhöfer, A. M.; Grewal, P. S. and Fuzy, E. M. (2007). Differences in penetration routes and establishment rates of four entomopathogenic nematode species into four white grub species. *J. Invert. Patho.*, **94**: 184-195.
- Koul, O. (2008). Phytochemicals and insect control: an antifeedant approach. *Crit. Rev. Plant Sci.*, **27**: 1–24.
- Koul, O. and Walia, S. (2009).

 Comparing impacts of plant extracts and pure allelochemicals and

- implications for pest control. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 4 (49). http://www.cabi.org/cabreviews
- Koul, O.; Multani, J. S.; Goomber, S.; Daniewski, W. M.; Berlozecki, S. (2004). Activity of some non-azadirachtin limonoids from *Azadirachta indica* against lepidopteran larvae. *Australian J. Ento.*, **43**: 189–195.
- Krischik V. and Davidson, J. 2007.

 Integrated Pest Management of
 Northwest Landscapes.

 Minneapolis (MN): Regents of
 the University of Minnesota.
 Chapter 1, 23-24.
- Kulkarni, S. R. and Patil S. K. (2013). Efficacy of different biopesticides and insecticides against mealy bugs on custard apple. *Pest Manage. Hortic. Ecosyst.*, **19**(1): 113-115.
- Laznik, Z. and Trdan, S. (2010). Intraspecific variability of *Steinernema feltiae* (Filipjev) (Rhabditida: Steinernematidae) as biological control agent of rice weevil (*Sitophilusoryzae* L., Coleoptera, Curculionidae) adults. *Acta Agric. Slovenica*, **95**(1): 51-59.
- Liang, G. M; Chen, W. and Liu, T. X. (2003). Effect of three neem based insecticides on diamondback moth (Lepidoptera: Plutellidae). *Crop Prot.*, **22**(2): 333-340.
- Loc, N. T. and Chi, V. T. B. (2005). Efficacy of some new isolates of *Metarhizium anisopliae* and *Beauveria bassiana* against rice earhead bug, *Leptocorisa acuta. Omonrice*, **13**: 69-75.

- Manisegaran, S.; Lakshmi, S. M. and Srimohanapriya, V. (2011). Field evaluation of *Metarhizium anisopliae* (Metschnikoff) Sorokin against *Holotrichia serrata* (Blanch) in sugarcane. *J. Biopest.*, **4**(2): 190-193.
- Matharu, K. S. and Mehta, P. K. (2016). Field efficacy of plant extracts against tomato fruit borer, *Helicoverpa armigera*. *The Bioscan*, **11**(1): 155-158.
- McGaughey, W. H. (1978). Effects of larval age on the susceptibility of almond moths and Indianmeal moths to *Bacillus thuringiensis*. *J. Econ. Ento.*, **71**(5): 923-925.
- Mishra, A. and Singh, S. V. S. (2014). Efficacy of some plant extracts against diamondback moth (*Plutella xylostella*) on cabbage. *Ann. Plant Sci.*, **3**(8): 797-798.
- Mohammadbeigi, A. and Port, G. (2013). Efficacy of *Beauveria bassiana* and *Metarhizium anisopliae* against *Uvarovistia zebra* (Orthoptera: Tettigoniidae) *via* contact and ingestion. *Int. J. Agri. Crop Sci.*, **5**(2): 138-146.
- Moorthy, P. N. K. and Kumar, N. K. K. (2000). Efficacy of neem seed kernel powder extracts on cabbage pests. *Pest Manage*. *Hortic. Ecosyst.*, **6**(1): 27-31.
- Mustafiz, S. S. B.; Chowdhury, M. T. I. and Akter, A. (2015). Efficacy of some botanicals in controlling fruit borer (*Heliothis armigera*) in tomato. *Acad. J. Ento.*, (3): 140-149.
- Naik, P. R. H. and Shekharappa. (2009). Field evaluation of different entomopathogenic fungal formulations against sucking pests of okra.

- *Karnataka J. Agric. Sci.*, **22**(3): 575-578.
- Nair, N.; Tudu, B.; Debnath, M. R., Dey, P. K. and Somchoudhury, A. K. (2011). Efficacy of *Bacillus thuringiensis* var. kurstaki and NPV against tea looper, *Hyposidra infixaria* Walk. (lepidoptera: Geometridae). *J. Ento. Res.*, **35**(1): 15-18.
- Noonari, A. M.; Abro, G. H.; Khuhro, R. D. and Buriro, A. S. (2016). Efficacy of biopesticides for management of sucking insect pests of cotton, *Gossipium hirsutum* (L.). *J. Basic Appl. Sci.*, **12**: 306-313.
- Odewole, A. F. and Adebayo, T. A. (2014). Field evaluation of plant extracts for the control of diamond moth (*Plutella xylostella* Linnaeus) infesting cabbage (*Brassica oleracea* Linn). *Int. Lett. Nat. Sci.*, **16**: 164-178.
- Phukon, M.; Sarma, I.; Borgohain, R.; Sarma, B. and Goswami, J. (2014). Efficacy of *Metarhizium anisopliae*, *Beauveria bassiana* and Neem oil against tomato fruit borer, *Helicoverpa armigera* under field condition. *Asian J. Bio*. *Sci.*, **9**(2): 151-155.
- Pugalenthi, P.; Dhanasekaran, Elumali, K. and Krishnappa, K. (2013). Bioefficacy of nuclear polyhedrosis virus (NPV) tested against American bollworm, Helicoverpaarmigera (Hub.) (Lepidoptera: Noctuidae) and protection of cotton boll damage. Int. J. Renewable Environ. Sci., 1(3): 22-26.
- Rabindra, R. J. and Subramaniam, T. R. (1975). Nuclear polyhedrosis of *Corcyra*

- cephalonica Stainton (Lepidoptera: Pyralidae). *Curr. Sci.*, **31**(1): 116.
- Rahman, A. K. M. Z.; Haque, M. H.; Alam, S. N.; Mahmudunnabi, M. and Dutta, N. K. (2014). Efficacy of botanicals against *Helicoverpa armigera* (Hubner) in tomato. *The Agriculturists*, **12**(1): 131-139.
- Rajput, A. A.; Sarwar, M.; Bux, M. and Tofique, M. (2003). Evaluation of synthetic and some plant origin inseticides against *Helicoverpa armigera* (Hubner) on chickpea. *Pak. J. Biol. Sci.*, **6**(5): 496-499.
- Rakhmad, R.; Rahayu, S. E. and Prayogo, Y. (2015). Efficacy of entomopathogenic fungi *Verticillium (Lecanicillium) lecanii* Zimm. (Hypocreales: Clavicipitaceae) toward controlling *Bemisia tabaci* Genn (Hemiptera: Aleyrodidae) on soybean. *KnE Life Sci.*, 2: 410-414.
- Ramanujam, B.; Rangeshwaran, R.; Sivakmar, G.; Mohan, M. and Yandigeri, M. S. (2014). Management of Insect Pests by Microorganisms. *Proc. Indian Nat. Sci. Acad.*, **80**: 455-471.
- Razmjoo, M.; Jafari, M.; Shams, M.; Zand, A. J. and Jafarpour, M. (2013). Sensitivity evaluation diamondback moth, *Plutella xylustella* L. (Lepidoptera: Plutellidae) to extract the bitter olive, *Melia azedarach* L. (Meliaceae). *Int. J. Agri. Crop Sci.*, **5**(13): 1453-1456.
- Reddy, K. R. K; Praveen Kumar, D. and Reddy, K. R. N. (2013). Entomopathogenic fungi: a potential bioinsectcide. *KAVAKA*, **41**: 23-32.
- Reddy, A. V.; Devi, R. S. and Reddy, D. V. V. (2012). Evaluation of

- botanical and other extracts against plant hoppers in rice. *J. Biopest*, **5**(1): 57-61.
- Rizvi, S. A. H. and Jaffar, S. (2015). Efficacy of some selected insecticides chemical and biopesticides against tomato fruit worm (Helicoverpa under armigera) the agro climatic condition of Gilgit Baltistan, Pakistan. J. Ento. Zool. Stud., 3(4): 50-52.
- Rosell, G.; Quero, C. and Coll, J. (2008). Biorational insecticides in pest management. *J. Pesticide Sci.*, **33**: 103-121.
- Sahayaraj, K. (2011). Aqueous and water extracts of chosen botanicals on *Helicoverp aarmigera* Hubner and *Spodoptera litura* Fab. *J. Agric. Tech.*, **7**(2): 339-347.
- Sahayaraj, K. and Namachivayam, S. K. R. (2011). Field evaluation of three entomopathogenic fungi on groundnut pests. *Tropicultura*, **29**(3): 143-147.
- Samodra, H. and Ibrahim, Y. (2006). Effects of dust formulations of three entomopathogenic fungal isolates against *Sitophilus oryzae* in rice grain. *Jurnal Biosains*, **17**(1): 1-7.
- Shafighi, Y.; Ziaee, M. and Ghosta, Y. (2014). Diatomaceous earth used against insect pests, applied alone or in combination with *Metarhizium anisopliae* and *Beauveria bassiana*. *J. Plant Protec. Res.*, **54**(1): 62-66.
- Sharifi, S.; Karimi, J.; Hosseini, M. and Rezapanah, M. (2014). Efficacy of two entomopathogenic nematode species as potential biocontrol agents against the rosaceae longhorned beetle, Osphranteria coerulescens,

- under laboratory conditions. *Nematol.*, **16**: 729-737.
- Solangi, B. K.; Suthar, V.; Bilal, M.; Pathan, M.; Qureshi, B. and Qureshi N. A. (2016). Screening of biopesticides against insect pests of cauliflower. *Sindh Univ. Res. J.*, **48**(2): 413-418.
- Sontakke, P. P.; Behere, G. T.; Firake, D. M. and Thubru, D. P. (2014). Evaluation of toxicity and cotoxicity of biopesticides against diamondback moth, *Plutella xylostella* (L.). *J. Biopest.*, **7**(1): 90-97.
- Stanikzi, R. and Thakur, S. (2016). Efficacy of chemical insecticides and botanicals in the management of diamondback moth (*Plutella xylostella*) in cabbage (*Brassica oleracea* var. capitata L.). *Int. J. Multidisciplinary Res. Devp.*, 3(6): 101-104.
- Sundararaj, R.; Remadevi, O. K. and Rajamuthukrishnan (2004).Some plant products antifeedants against the teak defoliator, Hyblaea puera Cramer (Lepidoptera: Hyblaeidae) and teak skeletonizer, Paliga machaeralis Walker (Lepidoptera: Pyralidae). Ann. For., 12(2): 273-277.
- Thacker, J. R. M. (2002). *An Introduction to Arthropod Pest Control*. Cambridge University
 Press, Cambridge.
- Tuan, N. M.; Anh, B. L. and Anh, B. N. H. (2014). Efficacy of garlic and chili combination solution on cabbage insect pests and crop growth in Vietnam. *Int. J. Biol. Biomol. Agric. Food Biotechnol. Engg.*, **8**(10): 1151-1154.

- Uma M. S. and Kumar, A. R. V. (2009). Laboratory evaluation of some botanicals against diamondback moth, *Plutella xylostella* L. (Lepidoptera: Plutellidae). *Pest Manage. Hortic. Ecosyst.*, **15**(1): 41-47.
- Vanlaldiki, H.; Singh, M. P. and Sarkar, P. K. (2013). Efficacy of eco-friendly insecticides on the management of diamondback moth (*Plutella xylostella* Linn.) on cabbage. *The Bioscan*, **8**(4): 1225-1230.
- Vinodhini, J. and Malaikozhundan, B. (2011). Efficacy of neem and pungam based botanical pesticides on sucking pests of cotton. *Indian J. Agric. Res.*, **45**(4): 341-345.
- Zafar, J.; Freed, S.; Khan, B. A. and Farooq, M. (2016).Effectiveness of Beauveria bassiana against cotton whitefly, Bemisia tabaci (Gennadius) (Aleyrodidae: Homoptera) on different host plants. Pak. J. Zool., 48(1): 91-99.

[MS received: October 13, 2016]

[MS accepted: November 12, 2016]